On-the-fly Operation Batching in Dynamic Computation Graphs

نویسندگان

  • Graham Neubig
  • Yoav Goldberg
  • Chris Dyer
چکیده

Dynamic neural network toolkits such as PyTorch, DyNet, and Chainer offer more flexibility for implementing models that cope with data of varying dimensions and structure, relative to toolkits that operate on statically declared computations (e.g., TensorFlow, CNTK, and Theano). However, existing toolkits—both static and dynamic—require that the developer organize the computations into the batches necessary for exploiting high-performance algorithms and hardware. This batching task is generally difficult, but it becomes a major hurdle as architectures become complex. In this paper, we present an algorithm, and its implementation in the DyNet toolkit, for automatically batching operations. Developers simply write minibatch computations as aggregations of single instance computations, and the batching algorithm seamlessly executes them, on the fly, using computationally efficient batched operations. On a variety of tasks, we obtain throughput similar to that obtained with manual batches, as well as comparable speedups over singleinstance learning on architectures that are impractical to batch manually.2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Learning with Dynamic Computation Graphs

Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep le...

متن کامل

Low Latency RNN Inference with Cellular Batching

Performing inference on pre-trained neural network models must meet the requirement of low-latency, which is often at odds with achieving high throughput. Existing deep learning systems use batching to improve throughput, which do not perform well when serving Recurrent Neural Networks with dynamic dataflow graphs. We propose the technique of cellular batching, which improves both the latency a...

متن کامل

Normalized Tenacity and Normalized Toughness of Graphs

In this paper, we introduce the novel parameters indicating Normalized Tenacity ($T_N$) and Normalized Toughness ($t_N$) by a modification on existing Tenacity and Toughness parameters.  Using these new parameters enables the graphs with different orders be comparable with each other regarding their vulnerabilities. These parameters are reviewed and discussed for some special graphs as well.

متن کامل

Influence of Operation Conditions Upon the Dynamic Steady State Performance of Switched Reluctance Motor

In order to obtain more accurate predicted dynamic steady-state performance with shorter computation time, an available mathematical model is modified and presented. Using this modified model, performance of a typical switched reluctance motor (SRM) under a wide range of variations of operating conditions is obtained and discussed. These include variations of speed, voltage, load and switching ...

متن کامل

Tenacity and some other Parameters of Interval Graphs can be computed in polynomial time

In general, computation of graph vulnerability parameters is NP-complete. In past, some algorithms were introduced to prove that computation of toughness, scattering number, integrity and weighted integrity parameters of interval graphs are polynomial. In this paper, two different vulnerability parameters of graphs, tenacity and rupture degree are defined. In general, computing the tenacity o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017